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ABSTRACT 
 
In this study we investigated multi-frame motion estimation 
for freehand ultrasound elastography and its application to 
thyroid tumor imaging. Motion analysis using a technique of 
compression orientation detection led us to introduce a new 
parameter based on the angle of estimated motion vectors. 
We show how our method may improve the quality of the 
results compared to classical strain images.  

 
Index Terms— multi-frame motion estimation, 

ultrasound elastography, image registration.  
 

1. INTRODUCTION 
 
Among motion estimation techniques, those based on block 
matching [1] are the most common and have their 
application in different fields, such as moving picture coding 
or medical domain. In ultrasound imaging, one of the 
medical applications for motion tracking is elastography [2]. 
The basis of this method lies in the significant difference in 
the elastic properties between normal and diseased tissues, 
in our case between normal thyroid and malignant thyroid 
tumors [3]. It consists in measuring the elasticity of soft 
tissues, using ultrasound images acquired while a 
compressive force is freehandly applied to the tissue surface, 
directly with the ultrasound probe. First, motion tracking 
between images acquired in this way is processed. The 
estimated motion is then used to reconstruct mechanical 
properties of the examined tissues. Usually, strain images 
calculated by derivation of the estimated displacement are 
shown.  
Theoretically, all existing techniques of motion tracking can 
be used to estimate the displacement between ultrasound 
images. However, Yeung et al. show in [4] the challenges in 
motion tracking introduced by ultrasound images, such as 
speckle decorrelation and low signal-to-noise ratio. 
Moreover, the freehand compression does not allow any 
control of the tissues displacement. Therefore, estimation 
methods adapted to ultrasound images and more particularly 
to ultrasound elastography were proposed [5]. 
We have already presented in [6] a block matching based 
method using a bilinear parametric model to locally control 

the tissue deformation. Thus, we showed how the proposed 
multi-scale approach allows locally estimating small motions 
compared to the images resolution. We have also showed on 
simulated and in-vivo ultrasound images that this motion 
estimation method is more accurate than classical block 
matching. In this paper, we show how this motion tracking is 
expanded to multi-frame motion estimation. Compression 
orientation detection is proposed and shown to be a good 
criterion of eliminating bad images from an acquired 
sequence. Once the 2-D dense motion field estimated, a 
novel parameter is proposed and shown to improve image 
quality and resolution of thyroid elastograms compared as to 
classical strain images.  
 

2. METHOD 
 
2.1. Local motion modeling 
 
The problem addressed here is to estimate the motion given 
a sequence of N ultrasound images, noted I( x, y,t ) . The 

relation between a pair of consecutive frames is given in (1). 

I( x, y,t 1 ) I( x u( x, y,t ), y v( x, y,t ),t )+ = + +  (1) 

where u(x,y,t) and v(x,y,t) are the spatially varying motion 
fields along the two directions of the images (x and y are 
respectively the lateral and axial directions) between images 
t and t+1. Our method will independently estimate these two 
components in each pixel of the reference image t, for t 
running from 1 to N-1. Then, a global 2-D motion field is 
calculated in each pixel of image I( x, y,1 ) , taking into 

account the N-1 estimations done previously, as shown in 
figure 1 [7]. This strategy of estimation allows compression 
orientation estimation at each step in the sequence, as shown 
in section 2.3. 

 
Figure 1. Schematic multi-frame motion tracking 
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2.2. Algorithm description 
 
1. For each pair of images I(x,y,t)  I(x,y,t+1), do steps 
from 2 to 7. 
Estimation between two images: 
2. Create initial rectangular mesh on I(x,y,t). 
3. Define rectangular regions of interest around each node. 
4. For each node, do steps 5 and 6. 
Node N: 
5. Estimate the parameters of the bilinear model (2) for the 
current region of interest.  

u u u u

v v v v

u( x, y,t ) a .x b .y c .x.y d

v( x, y,t ) a .x b .y c .x.y d

= + + +

= + + +
 (2) 

6. If final node, go to step 7, otherwise go to step 4. 
7. Using the estimation result for all regions of interest, 
compute the dense motion field and make t t 1= + . If t N= -
1, go to step 8, otherwise go to step 1. 
Calculate the global motion field u( x, y ) and v( x, y ) : 

8. Using the estimated motion between couples of images, 
we calculate for each of these couples two parameters giving 
an indication on how the compression have been applied 
between these images. For more details, see section 2.3. 
9. Using the parameters calculated at step 8, we eliminate 
bad image couples. Let T be a vector containing the instants 
t which are not eliminated. 
10. Transform the estimated displacements at each instant t 
so that the motion vectors correspond to the pixels of the 
first image I(x,y,1). We obtain in this way the trajectory of 
all pixels of the first image along the image sequence. Let us 
denote by ut(x,y) and vt(x,y) the motion components between 
images I(x,y,t) and I(x,y,t+1) corresponding to pixels of 
frame I(x,y,1). Obviously, for t equal to 1, we have: 

1 1u ( x, y ) u( x, y,1) and v ( x, y ) v( x, y,1)= =  (3) 

Moreover, for t larger than 1, we have: 
t 1 t 1

t j j

j 1 j 1

t 1 t 1

t j j

j 1 j 1

u ( x, y ) u x u ( x, y ),y v ( x, y ),t

v ( x, y ) v x u ( x, y ),y v ( x, y ),t

− −

= =

− −

= =

= + +

= + +

 

 

(4) 

11. Final global motion of sequence I is defined as: 
card ( T )

T ( j )

j 1

card ( T )

T ( j )

j 1

1
u( x, y ) u ( x, y )

card( T )

1
v( x, y ) v ( x, y )

card(T )

=

=

=

=

 

 

(5) 

12. Calculate the motion ratio image (6) between the lateral 
and axial components of the estimated global motion. The 
relevance of this parameter for malignant tumors 
discrimination is discussed in section 4. 

u( x, y )
tan( ( x, y ))

v( x, y )
γ=  (6) 

where ( x, y )γ is the orientation angle map of global motion 

vectors reported to the first selected image.  
 
2.3. Compression orientation 
 
As explained in the introduction, the motion we are 
estimating is the result of a freehand compression induced to 
the tissues directly by the ultrasound probe. Along an image 
sequence, the compression is not constant and can be very 
difficultly controlled. Therefore, we introduce a criterion in 
order to eliminate the images which are not coherent with 
the other frames in terms of applied compression. This 
criterion is used at steps 8 and 9 in the algorithm description 
above. 
Figure 2 shows the conditions of acquisition for ultrasound 
elastography. We can observe that the compression is not 
necessarily axial, but can have an oblique orientation. In 
order to estimate this orientation, for each lateral profile (at 
depth y0) of the lateral displacement map, we detect the 
lateral position x0 as shown in (7).  

 0 0
x

x ( t ) arg min( u( x, y ,t ) )=  (7) 

Thus, for a given estimation at an instant t, for each depth y0 
we find x0 which represents the point that have the smallest 
lateral displacement. Points (x0,y0) are considered to belong 
to the compression orientation line shown in figure 2. As in 
an experimental case these points do not describe a perfect 
line, a first order polynomial function is fitted to this data in 
order to approximate the compression orientation, as shown 
in equation (8).  

0 0x y tan( )γ δ= ⋅ +  (8) 

 
Figure 2. Schematic representation of the compression 

applied with the ultrasound probe. 
 
The relevance of this approach is shown by the simulation 
result in the next section.  

 
3. SIMULATION RESULTS 

 
We present in this section a simulation result in order to 
validate the method of compression orientation detection 
explained previously. We used an experimental ultrasound 
image representing a 20×30 mm (axial×lateral) homogenous 
tissue. Seven artificial compressions were simulated using 
different compression angles ( ) and offsets ( ). The motion 
estimation method described in section 2.2 was employed to 
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track the motion between the eight resulted images. Figures 
3(a) and 3(b) show the results given by the approach 
presented in 2.3 versus the true values of  and  along the 
image sequence. Moreover, these results are compared with 
those obtained by the same orientation detection, but after 
tracking the motion with a classical block matching method. 

We observe that in this case the gap between estimated and 
true values is larger than with our motion estimation method. 
In figure 3(c) we show the mean square error obtained when 
fitting the first order polynomial function, giving  and , to 
measured data from lateral displacements.   

   
(a) (b) (c) 

Figure 3. Compression orientation angle (a) and offset (b) detected using motion estimation processed with our method and 
with classical block matching (BM) versus true values, mean square error between first order polynomial function and data 

measured from lateral displacement estimated with our method and with block matching method (c). 
 

4. EXEPERIMENTAL RESULTS 
 

In-vivo testing of this method was performed on the sets of 
clinical strain images (eleven frames each) of the patients 
with thyroid cancer. The ultrasound acquisition was made 
using a clinical ultrasound scanner (Sonoline Elegra) and a 
7.5-MHz linear probe (both, Siemens Medical Systems, 
Issaquah, XA, USA). The images were acquired while a 
small compression was applied to the neck over the 
examined medium. The contours of the thyroid gland and of 
the tumor on the ultrasound images were manually outlined 
by the radiologist who performed the examination.  
Motion estimation between the ten consecutive pair of 
frames was processed using the algorithm presented in 
section 2.2. The compression orientation parameters were 
then calculated for each estimation result and are plotted in 
figures 4(a) and (b). 

  
(a) (b) 

Figure 4. Compression orientation angle (a) and offset (b) 
estimated with the thyroid image sequence. 

 
As explained in the algorithm description at step 16, we use 
this compression orientation as a criterium to eliminate some 
of the estimation results. Note that a perfect axial 
compression correspond to an angle of zero degrees and to 
an offset equal to half the width of the processed zone, 
corresponding to 12.9 mm in this case (dashed line in figure 
3(b)). We observe in figure 3 (b) that only three instants are 
close to this value, for t equal to 1, 4 and 5. Moreover we 
observe that the compression angle for the fourth and the 
fifth estimations are roughly the same, which is not the case 
for the estimation number one. For these reasons, the vector 

T introduced in step 9 and used in equation (5) (section 2.2) 
is set to [4 5] for this image sequence. 
The estimation results are shown in Figure 5. Figure 5(a) 
shows the contours drawn by the doctor superimposed to the 
estimated region. Note that the estimation was processed 
only on a region of the images, centered to the thyroid gland. 
Classical strain images (axial derivate of the axial 
displacement) and maps of the parameter introduced in (6) 
are shown in Figure 5. In both cases two results are given, 
using the entire sequence (figures 5(d) and (f)) and using 
only the two selected estimations (figures 5(c) and (e)). 
Figure 5(b) represents the 2-D estimated motion vectors 
resulting from estimations 4 and 5.  
As with this sequence the applied compression is never axial 
(the orientaion angle is always different of 0 degrees), the 
axial strain images are not well adapted to detect the tumor. 
However, on the maps representing the ratio between lateral 
and axial displacements the tumor is clearly visible. Note 
that this ratio is related by tangent function to the angle of 
motion vectors. In fact, it is shown in the literature that the 
malignant tumors are roughly five times harder than the 
thyroid [8]. It results that even for a non axial compression, 
the motion of all pixels inside the tumor is homogenous. For 
this reason, the ratio between the lateral and the axial 
components is roughly constant and different from the rest 
of the thyroid. In our case, the tumor is caracterized by small 
values of this ratio, which correspond to small angles of 
motion vectors. Indeed, as the tumor is harder than the 
thyroid, the lateral motion inside the tumor is very small 
compared to the rest of the tissues. 
In addition, we observe that considering estimations 
corresponding to similar compression orientations makes the 
tumor be characterized by more regular and distinct margins. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 5. Estimated region, T – thyroid gland, Tm - tumor 
(a), estimated motion vectors (b), motion ratio map with 

displacements 4 and 5 (c) and with the entire sequence (d), 
strain images with displacements 4 and 5 (e) and with the 

entire sequence (f). 
 
In figure 5(a), two rectangular regions (dashed line) are 
selected inside the healthy (A) and diseased (B) parts of the 
thyroid. For these two regions, the contrast to noise ratio (9) 
for B-mode images and for all estimated maps is given in 
table 1.  

A B

A B

CNR
μ μ

σ σ

−
=

+
 (9) 

where  represents the mean value and  the standard 
deviation calculated for regions A and B. We notice that the 
best contrast between healthy thyroid and tumor is given by 

the motion ratio map after images selection. The CNR is in 
this case roughly three times higher than with B-mode 
images. 
 

Whole sequence T=[4 5]  
B-mode Strain 

image 
Motion 

ratio 
Strain 
image 

Motion 
ratio 

0.53 0.6 1.19 0.23 1.6 

Table 1. CNR calculated for regions A and B for B-mode 
image and for strain and motion ratio maps. 

 
5. CONCLUSION 

 
In this paper, we presented the multi-frame extension of a 
parametric deformable block matching adapted to ultrasound 
images. The method was developed for elastography and 
applied to thyroid cancer imaging. An approach of 
estimating the orientation of the applied compression is 
proposed. It is used to sort the acquired sequence and to 
calculate the final global motion of the sequence by using 
only accepted frames. Finally, a new parameter related to the 
angle of motion vectors is presented. It is shown that this 
parameter may improve the quality of thyroid elastograms 
and facilitate the thyroid cancer diagnosis.  
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